東芝、酸化銅を用いた太陽電池で透明化に成功、世界初、発電効率22.0 %

2019年02月01日

一般社団法人エネルギー情報センター

新電力ネット運営事務局

東芝、酸化銅を用いた太陽電池で透明化に成功、世界初、発電効率22.0 %の写真

東芝は、タンデム型太陽電池の実現に向けて、世界で初めて亜酸化銅を用いたセルの透明化に成功したと発表しました。透明で目立たず、限られた面積で高い発電効率を期待できる技術となります。太陽光発電事業において高い採算性の期待できる土地が少なくなる中、ニーズが高まっていくものと考えられます。

透明かつ高効率な太陽光発電、東芝が開発

これまで日本の再エネ普及を牽引してきた太陽光発電ですが、原則的に効率的な発電が期待できる土地から開発が進んでいく中、採算性の高い土地を確保していくことは今後より困難になっていくと考えられます。

そのため、今後は限られた設置面積を有効利用できる太陽光発電システムへのニーズが高まっていくものと考えられます。この点、日本においても研究開発が進められており、東芝はフィルム型のペロブスカイト太陽光発電で世界最高の変換効率10.5%を達成したと発表しています。印刷プロセスで作製できるため低コスト化が可能であり、フィルム型のため従来は設置できなかった場所で発電することが可能となります【関連記事】。

また、東北大学は透明かつフレキシブルな太陽電池の開発に成功したと発表しています。車のフロントガラスやビルの窓、携帯電話ディスプレイの表面、さらには人体の皮膚等、あらゆる場所へ太陽電池を設置することが可能なポテンシャルを持ちます【関連記事】。

その他、理化学研究所は東京大学と科学技術振興機構との共同研究グループは、衣服に貼り付け、洗濯ができる太陽光電池の開発に成功しています。ウェアラブルセンサーの電源に活用することが期待される技術となります【関連記事】。

このように、日本においては様々な団体等で研究が進められ、太陽光発電の適用範囲は今後広まっていくものと考えられます。なお、限られた面積で効率的に発電するという観点では、近年、タンデム型太陽電池への期待が高まっています。

タンデム型太陽電池は、異なる材料の太陽電池を積層した構造を持ち、高い発電効率を実現できると考えられています。一つの材料を用いた太陽電池では、スペクトルミスマッチにより、50%以上の高い変換効率は困難を極めますが、タンデム型はその問題を解決できるポテンシャルを持ちます。

こうした中、東芝は、タンデム型太陽電池の実現に向けて、世界で初めて亜酸化銅(Cu2O)を用いたセルの透明化に成功したと発表しました(図1)。透明で目立たず、限られた面積で高い発電効率を期待できる技術となります。太陽光発電事業において高い採算性の期待できる土地が少なくなる中、ニーズが高まっていくものと考えられます。

透過型Cu2O太陽電池(小型セル:サイズ25mm角)

図1 透過型Cu2O太陽電池(小型セル:サイズ25mm角) 出典:東芝

地球上に豊富に存在する銅の酸化物(Cu2O)を利用

現在タンデム型としてはガリウムヒ素半導体などを用いた太陽電池が製品化されており、市販の結晶Si太陽電池と比べて1.5倍から2倍高い30%台の発電効率が報告されています。一方で、結晶Si単体の太陽電池と比べて製造コストが数百倍~数千倍と高いことが課題となっています。

そこで東芝は、低コストなタンデム太陽電池のトップセル用に、世界初の透過型Cu2O太陽電池を開発しました。Cu2Oは、地球上に豊富に存在する銅の酸化物で低コスト化が見込めるほか、高効率な発電も期待できます。

Cu2Oは酸化銅(CuO)や銅(Cu)といった不純物相が生成しやすく、かつ混ざり合いやすい性質があります。しかし東芝は、Cu2Oの薄膜を形成するプロセスにおいて、酸素の量を精密制御する独自の成膜法を適用し薄膜内部でのCuOやCuの発生を抑えることで、Cu2Oの透明化を実現しました。これにより、波長が600nm以上の長波長光を約80%透過することができます。

また、結晶Siとは異なる波長域の光を吸収して発電するため、結晶Siの発電が殆ど阻害されない特徴があります。透過型Cu2O太陽電池をトップセルに用い、現在広く普及している結晶シリコン(Si)太陽電池をボトムセルに用いることで、長波長光で高効率に発電しています。全体として、短波長から長波長まで幅広い波長の光をエネルギーに変換できるので、低コストで高効率なタンデム型太陽電池の実現が可能となります(図2)。

なお、東芝は、今回の技術を用いたプロトタイプにて実験を行っており、ボトムセルに用いた結晶Si太陽電池が、単体で発電させた場合の約8割の高出力を維持して発電することを確認しています。

プロトタイプのタンデム太陽電池の効率は、トップセル効率の4.4 %とボトムセル効率の17.6 %の合計値であり,初期目標効率である20%を超える22.0 %という良好な結果が得られています。

この続きを読むには会員登録(無料)が必要です。

無料会員になると閲覧することができる情報はこちらです
電力の補助金

補助金情報

再エネや省エネ、蓄電池に関する補助金情報を一覧できます

電力料金プラン

料金プラン(Excel含)

全国各地の料金プラン情報をExcelにてダウンロードできます

電力入札

入札情報

官公庁などが調達・売却する電力の入札情報を一覧できます

電力コラム

電力コラム

電力に関するコラムをすべて閲覧することができます

電力プレスリリース

プレスリリース掲載

電力・エネルギーに関するプレスリリースを掲載できます

電力資格

資格取得の支援

電験3種などの資格取得に関する経済支援制度を設けています

はてなブックマーク

執筆者情報

一般社団法人エネルギー情報センターの写真

一般社団法人エネルギー情報センター

新電力ネット運営事務局

EICは、①エネルギーに関する正しい情報を客観的にわかりやすく広くつたえること②ICTとエネルギーを融合させた新たなビジネスを創造すること、に関わる活動を通じて、安定したエネルギーの供給の一助になることを目的として設立された新電力ネットの運営団体。

企業・団体名 一般社団法人エネルギー情報センター
所在地 東京都新宿区新宿2丁目9−22 多摩川新宿ビル3F
電話番号 03-6411-0859
会社HP http://eic-jp.org/
サービス・メディア等 https://www.facebook.com/eicjp
https://twitter.com/EICNET

関連する記事はこちら

2024年度にも国内で初導入が計画される潮流発電。世界の先進的な事例や、その仕組みと可能性とは!?の写真

一般社団法人エネルギー情報センター

2023年08月17日

新電力ネット運営事務局

2024年度にも国内で初導入が計画される潮流発電。世界の先進的な事例や、その仕組みと可能性とは!?

排他的経済水域世界第6位という海洋国である我が国において、海洋エネルギーは大きなポテンシャルを有しています。潮流発電は一定の規則性を持った潮汐力により、年間を通じて安定的で、予測可能な発電方式であることから今後の可能性として期待がされます。今回は、潮流発電(潮汐力発電)について紹介します。

太陽光パネルの廃棄とリユース・リサイクルの現状と課題の写真

一般社団法人 環境エネルギー循環センター(EECC)

2023年07月31日

EECC運営事務局

太陽光パネルの廃棄とリユース・リサイクルの現状と課題

導入が進んだ太陽光パネルの廃棄に関する問題について、政府が検討会を通じで業界団体にヒアリングをしています。その中で、実態が浮き彫りになってきた太陽光パネルのリユース・リサイクルの現状と課題についてご紹介します。

日本はポテンシャルが高い!?地熱発電を地域観光や企業の自家発電に活用の写真

一般社団法人エネルギー情報センター

2022年12月07日

新電力ネット運営事務局

日本はポテンシャルが高い!?地熱発電を地域観光や企業の自家発電に活用

電力高騰や原発再稼働などがメディアで取りざたされている電力業界。カーボンニュートラル社会に向けて、これから考えれることは何か。今回は、日本にはまだポテンシャルのあるクリーンエネルギーの一つである地熱発電を取り上げ、国内外の事例をご紹介します。

風力発電の最新の国内動向や、課題と解決策についての写真

一般社団法人エネルギー情報センター

2022年09月29日

新電力ネット運営事務局

風力発電の最新の国内動向や、課題と解決策について

三菱商事の洋上風力の入札案件や豊田通商の陸上風力開発など、風力発電関連のニュースが多く取り上げられています。再生可能エネルギーとして日本では太陽光に次ぐ導入ポテンシャルがある風力発電の最新の国内動向をご紹介。また、課題や解決のための取り組みについても取り上げます。

世界で太陽光パネル廃棄に関する議論が加速。日本は24年にリサイクル義務化検討への写真

一般社団法人 環境エネルギー循環センター(EECC)

2022年09月08日

EECC運営事務局

世界で太陽光パネル廃棄に関する議論が加速。日本は24年にリサイクル義務化検討へ

今後、寿命を迎えた太陽光パネルの大量廃棄が起こるという懸念が世界中で広がっています。日本では、環境省が太陽光リサイクル義務化の検討にはいりました。そこで今回は、現状のリサイクル設備やパネル回収システムについてご紹介しながら、今後の廃棄・リサイクルの動きについて考えていきます。

 5日間でわかる 系統用蓄電池ビジネス ビジネス屋と技術屋が一緒に考える脱炭素