マグマ起源の流体を利用する次世代の地熱発電、超臨界地熱発電の実現可能性の調査開始
政策/動向 | 再エネ | IT | モビリティ | 技術/サービス | 金融 |
2017年07月06日
一般社団法人エネルギー情報センター
7月4日、NEDOは超臨界地熱発電技術について実現可能性の調査に着手すると発表しました。超臨界地熱発電は、国内の地熱発電容量を現在の数十倍以上にできるポテンシャル(数十~数百GW)があるとされている次世代の地熱発電技術です。
非従来型地熱発電(EGS)技術の1つである超臨界地熱発電
地熱発電は、地球内部に蓄えられた熱エネルギーを利用した発電技術です。現在実用化されている地熱発電では、一般的に天然の地熱貯留層を掘りあて、高温・高圧の水蒸気・熱水を取り出して発電を行います。取り出した熱水資源を電気に変換する技術には、主に噴出した水蒸気をそのまま利用する「蒸気発電」と、水よりも低沸点の媒体に熱交換することによって低温域の熱源を利用できる「バイナリー・サイクル発電」があります。
1913年に世界初のラルデレロ地熱発電所(イタリア)が商用運転を開始して以降、地熱発電は徐々に導入が進められました。日本では、1966年に初の商用地熱発電所となる松川地熱発電所が運転を開始して以来、地熱発電の導入量が拡大してきました。2013年度末時点には、発電設備容量は約515MW、年間発電量は約2.6TWhとなり、日本の総発電量の約0.3%に相当する規模となりました。
また、近年は世界的な低炭素社会への移行の流れから、地熱発電の重要性は飛躍的に増大しています。日本においては、固定価格買取制度において高い価格が設定され、加えて国立公園内の地熱資源開発に係る規制が緩和されたことから、多数の新規案件が動き始めています。
今後の導入量のさらなる増大には、非従来型地熱発電(EGS)技術の開発が重要です。そうした新しい地熱発電の技術は様々あり、例えば従来技術よりも深い地点のエネルギーを活用する高温岩体発電や、さらに深く高温のマグマ起源の超臨界流体を利用する、超臨界地熱発電があります(図1)。この中の超臨界地熱資源は、単位質量あたりのエネルギーが大きな超臨界水(温度374℃以上、圧力22MPa以上の水)が高温高圧の岩石の割れ目のなかに存在する地熱資源です。
図1 次世代地熱発電技術 出典:JOGMEC
超臨界地熱資源は、高温であるためエネルギー密度が高く、また引き込まれたプレートに含まれる海水の量は相当量に達すると見込まれています。そのため、どの程度のポテンシャルがあるかが現時点では未確認ですが、極めて大きいと推測されています。従来型の技術において、地熱発電のポテンシャルは2370万kWとされていますが(図2)、超臨界地熱資源を活用することで地熱の活用可能性が広がると期待できます。
図2 地熱発電の導入可能量 出典:内閣府
日本やアイスランドで超臨界地熱資源の研究開発を実施
日本やアイスランドなどの地熱資源が豊富な国においては、超臨界地熱資源の研究開発が実施されています。アイスランドは、1次エネルギー使用量における地熱の割合が69%(2012年度)を占め、国家のエネルギー供給をまかなう点で、地熱エネルギーがこのように重要な役割を占めている国は珍しいです。
このアイスランドにおいて、近年、掘削により450℃の超臨界地熱資源の存在が確認されました。超臨界地熱資源を用いた場合の生産井一本あたりの発電量は、従来型地熱資源を用いた場合(3~5 MW)の10倍程度にもなる(35MW)と見積もられています。
日本においては、NEDOが超臨界地熱発電に関する先導研究(2014~2015年度 NEDOネルギー・環境新技術先導プログラム/島弧日本のテラワットエネルギー創成先導研究)を実施してきました。このNEDOの先導研究を含む最近の研究成果から、一定の条件を満たす火山地帯の3~5kmの深部には、約500℃の超臨界水が存在すると推定されています。
また、地熱井は従来の5倍程度の生産能力があり、国内の地熱発電容量を現在の数十倍以上にできるポテンシャル(数十~数百GW)があるとされています。超臨界地熱発電は、従来よりも高温高圧の地熱資源を活用する発電方式であり(図3)、1発電所あたりの大出力化が期待されます。
図3 超臨界地熱発電の概念図(従来型の地熱発電との比較) 出典:NEDO
この超臨界地熱発電において、「エネルギー・環境イノベーション戦略(NESTI2050)」が示すロードマップでは、①実現可能性調査、②試掘のための詳細事前検討、③試掘、④試掘結果の検証と実証実験への事前検討、⑤実証試験の5つのステップが組まれ、2050年頃の普及が目指されています(図4)。
図4 超臨界地熱発電ロードマップイメージ 出典:内閣府
NEDOが超臨界地熱発電技術の実現可能性の調査に着手
超臨界地熱発電技術について、7月4日にNEDOは実現可能性の調査に着手すると発表しました。NESTI2050が示すロードマップにおいて、最初の段階といえます。事業期間は2017年度の単年度であり、予算は約2億円、委託予定先は下記グループとなります。
この続きを読むには会員登録(無料)が必要です。
無料会員になると閲覧することができる情報はこちらです
執筆者情報
一般社団法人エネルギー情報センター
EICは、①エネルギーに関する正しい情報を客観的にわかりやすく広くつたえること②ICTとエネルギーを融合させた新たなビジネスを創造すること、に関わる活動を通じて、安定したエネルギーの供給の一助になることを目的として設立された新電力ネットの運営団体。
企業・団体名 | 一般社団法人エネルギー情報センター |
---|---|
所在地 | 東京都新宿区新宿2丁目9−22 多摩川新宿ビル3F |
電話番号 | 03-6411-0859 |
会社HP | http://eic-jp.org/ |
サービス・メディア等 | https://www.facebook.com/eicjp
https://twitter.com/EICNET |
関連する記事はこちら
一般社団法人エネルギー情報センター
2024年11月01日
前編では、ペロブスカイト太陽電池の基本的な特徴やそのメリットについて紹介しました。今回は、性能の安定性や材料に含まれる鉛の問題、エネルギー変換効率などの課題に対する最新の解決策や企業の取り組みを交えて解説します。
一般社団法人エネルギー情報センター
2024年09月27日
太陽光発電は、再生可能エネルギーの代表的な存在として世界中で注目を集めています。その中でも、シリコン太陽電池に次ぐ次世代のエネルギー技術として「ペロブスカイト太陽電池」が大きな注目を集めています。ペロブスカイト太陽電池は、軽量で柔軟性があり、従来の太陽電池では難しかった場所での活用が期待されていることから、多様な分野での普及が期待されています。 2024年度には福島県内での実証実験が予定され、日本国内でも本格的な導入に向けた動きが始まっています。注目が集まるペロブスカイト太陽電池について、2回に渡りお伝えします。第1回目では、ペロブスカイト太陽電池の基本的な特徴やメリット、そしてシリコン太陽電池との違いについて、詳しく解説していきます。
一般社団法人エネルギー情報センター
2024年08月28日
2024年度の出力制御②優先給電ルールにおける新たな施策について
再生可能エネルギー(再エネ)の導入拡大が進み、導入量が増えた結果、 電力需要が低い時期には「発電量過多」になり、全国的に 出力制御 が行われるようになってきました。この出力制御について、2回に渡りお伝えしています。 1回目はそもそも出力制御とは何か、増加している要因、過去の事例についてお伝えしました。今回は、経済産業省・資源エネルギー庁が優先給電ルールに基づく新たな施策を公表したので、その内容をご紹介します。
一般社団法人エネルギー情報センター
2024年07月18日
太陽光ケーブル窃盗が再エネ普及を脅かす②ー盗難対策の重要性と太陽光ケーブル盗難から事業者を守るサービスや商品についてー
太陽光発電施設から銅線が盗まれる事件が後を絶ちません。銅相場が高止まりし、売却狙いの犯罪が再生可能エネルギーの産業を脅かしています。1回目は太陽光発電設備が狙われる理由と自衛についてをお伝えしました。2回目は盗難対策の重要性と太陽光ケーブル盗難から事業者を守るサービスや商品についてお届けします。
一般社団法人エネルギー情報センター
2024年06月13日
太陽光ケーブル窃盗が再エネ普及を脅かす①ー犯罪が増え続ける背景と自衛についてー
太陽光発電施設から銅線が盗まれる事件が後を絶ちません。銅相場が高止まりし、売却狙いの犯罪が再生可能エネルギーの産業を脅かしています。第2回にわたり銅窃盗の再生エネルギー戦略への影響と各企業の防止策についてご紹介します。1回目は太陽光発電設備が狙われる理由と自衛について、2回目は太陽光ケーブル盗難から事業者を守るサービスや商品についてお届けします。